49 research outputs found

    On the superiority of improper Gaussian signaling in wireless interference MIMO scenarios

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Recent results have elucidated the benefits of using improper Gaussian signaling (IGS) as compared to conventional proper Gaussian signaling (PGS) in terms of achievable rate for interference-limited conditions. This paper exploits majorization theory tools to formally quantify the gains of IGS along with widely linear transceivers for MIMO systems in interferencelimited scenarios. The MIMO point-to-point channel with interference (P2P-I) is analyzed, assuming that received interference can be either proper or improper, and we demonstrate that the use of the optimal IGS when received interference is improper strictly outperforms (in terms of achievable rate and mean square error) the use of the optimal PGS when interference is proper. Then, these results are extended to two practical situations. First, the MIMO Z-interference channel (Z-IC) is investigated, where a trade-off arises: with IGS we could increase the achievable rate of the interfered user while gracefully degrading the rate of the non-interfered user. Second, these concepts are applied to a two-tier heterogeneous cellular network (HCN) where macrocells and smallcells coexist and multiple MIMO Z-IC appear.Peer ReviewedPostprint (author's final draft

    Performance analysis of feedback-free collision resolution NDMA protocol

    Get PDF
    To support communications of a large number of deployed devices while guaranteeing limited signaling load, low energy consumption, and high reliability, future cellular systems require efficient random access protocols. However, how to address the collision resolution at the receiver is still the main bottleneck of these protocols. The network-assisted diversity multiple access (NDMA) protocol solves the issue and attains the highest potential throughput at the cost of keeping devices active to acquire feedback and repeating transmissions until successful decoding. In contrast, another potential approach is the feedback-free NDMA (FF-NDMA) protocol, in which devices do repeat packets in a pre-defined number of consecutive time slots without waiting for feedback associated with repetitions. Here, we investigate the FF-NDMA protocol from a cellular network perspective in order to elucidate under what circumstances this scheme is more energy efficient than NDMA. We characterize analytically the FF-NDMA protocol along with the multipacket reception model and a finite Markov chain. Analytic expressions for throughput, delay, capture probability, energy, and energy efficiency are derived. Then, clues for system design are established according to the different trade-offs studied. Simulation results show that FF-NDMA is more energy efficient than classical NDMA and HARQ-NDMA at low signal-to-noise ratio (SNR) and at medium SNR when the load increases.Peer ReviewedPostprint (published version

    Joint user scheduling, precoder design, and transmit direction selection in MIMO TDD small cell networks

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.New short-length single-direction frame structures are proposed for 5G time division duplex (TDD) systems, where the transmit direction [i.e., either downlink (DL) or uplink (UL)] can be independently chosen at each cell in every frame. Accordingly, high flexibility is provided to match the per-cell DL/UL traffic asymmetries and full exploitation of dynamic TDD is allowed. As a downside, interference management becomes crucial. In this regard, this paper proposes a procedure for dynamic TDD in dense multiple-input multiple-output small cell networks, where the transmit direction selected per small cell (SC) is dynamically optimized together with the user scheduling and transmit precoding. We focus on the maximization of a general utility function that takes into account the DL/UL traffic asymmetries of each user and the interference conditions in the network. Although the problem is non-convex, it is decomposed thanks to the interference-cost concept and then efficiently solved in parallel. Simulation results show gains in DL and UL average rates for different traffic asymmetries and SC/user densities as compared to existing dynamic TDD schemes thanks to the proposed joint optimization. The gains become more significant when there is high interference and limited number of antennas.Peer ReviewedPostprint (author's final draft

    Signal-timing offset compensation in dense TDD OFDM-based networks

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Orthogonal Frequency Division Multiplexing (OFDM)-based networks rely on time synchronization to obtain their best performance. Time synchronization with neighboring nodes can be satisfied by increasing the cyclic prefix (CP) length (at the expenses of spectral efficiency reduction) We show that by optimizing the transmit pre-compensation and receive post-compensation we can meet the time synchronization constraints and keep the CP at its minimum value. This concept is applied to paired-bands Frequency Division Duplexing (FDD) systems which tend to show inefficient occupancy of the uplink (UL)-band due to the traffic asymmetry. We consider the possibility of deploying multiple Time Division Duplexing (TDD) small eNBs (SeNBs) in the unused UL spectrum. In this scenario, time synchronization with macro eNB (MeNB) and neighboring SeNBs becomes essential. Two algorithms are proposed in order to ensure orthogonality of OFDM transmissions network-wide.Peer ReviewedPostprint (author's final draft

    Decentralized coordinated precoding for dense TDD small cell networks

    Get PDF
    ©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Cellular networks need the densification of small eNBs (SeNBs) to face the tremendous data traffic demand growth, implying an interference increase and making transmit coordination a key enabler. This article proposes a decentralized coordinated precoding (D-CoP) for downlink (DL) weighted sum-rate maximization in dense MIMO TDD small cell networks (SCNs). Each SeNB designs its own precoding matrices based on channel state information (CSI) of the served users and knowledge of the interference-cost matrix that allows managing interference towards unintended users. A protocol is proposed to acquire the interference-cost matrix by processing the uplink (UL) received signal provided that: 1) channel reciprocity can be assumed and 2) all users participating in DL can transmit in UL with an adequate transmit filter. In contrast to existing transmit coordination techniques, D-CoP is fully scalable, avoids estimation of the interfering channels, and does not require information exchange between SeNBs. In case all parameters are perfectly acquired, an iterative algorithm is presented with demonstrated monotonic convergence when all SeNBs update its transmit precoders simultaneously. Further, the problem is reformulated in order to derive a robust D-CoP under imperfect CSI conditions. Finally, simulations in 3GPP LTE-Advanced SCNs show significant user packet throughput gains, without increasing the complexity associated to transmit coordination. Robustness to imperfect CSI and non-ideal channel reciprocity is shown through simulations.Peer ReviewedPostprint (author's final draft

    Energy efficiency in latency-constrained application offloading from mobile clients to multiple virtual machines

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper addresses the energy-latency trade-off in distributed application offloading, in which an energy-limited handset offloads totally or partially an application to one or several virtual machines (VMs) located in remote locations or access points (APs) close to the mobile terminal (MT). One of the APs (the serving AP) provides radio access to the MT and is connected to the VMs through non-ideal backhaul (BH) links. In this setting, we optimize the offloading strategy (including the joint optimization of radio and computational resources) to minimize the energy consumption at the MT subject to a maximum latency constraint. In addition, we propose robust designs to cope with imperfect acquisition of the channel state information (CSI) and the BH parameters. Our findings show that, as far as the energy-latency trade-off is concerned, the optimal order of activation of the VMs does not depend on their processing capabilities but the delays of the BH links. However, once a VM is selected to participate in the processing, the optimal amount of processing allocated to such VM depends on its computational capabilities as well as on the features (capacity and delay) of the BH link. Additionally, offloading decisions become more conservative as the uncertainty in CSI and BH parameters increases.Peer ReviewedPostprint (author's final draft

    Efficient use of paired spectrum bands through TDD small cell deployments

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Traditionally, wireless cellular systems have been designed to operate in frequency division duplexing (FDD) paired bands that allocate the same amount of spectrum for both downlink (DL) and uplink (UL) communications. Such design is very convenient under symmetric DL/UL traffic conditions, as it used to be the case when voice transmission was predominant. However, due to the overwhelming advent of data services, which involves large asymmetries between DL and UL, the conventional FDD solution becomes inefficient. In this regard, flexible duplexing concepts aim to derive procedures to improve spectrum utilization by adjusting resources to actual traffic demand. In this work, we review these concepts and propose the introduction of time division duplexing (TDD) small eNBs (SeNB) to operate in the unused resources of an FDD-based system. This proposal alleviates the saturated DL/UL transmission commonly found in FDD-based systems through user offloading towards a TDD system based on SeNBs. In this context, the flexible duplexing concept is analyzed from three points of view: a) regulation, b) long term evolution (LTE) standardization, and c) technical solutions.Peer ReviewedPostprint (published version

    Gestió de la interferència distribuïda per a xarxes cel·lulars basades en coordinació multipunt

    No full text
    Treball per compendi de publicacions[ANGLÈS] With the objective of improving the system spectral efficiency and providing a homogeneous coverage for future cellular networks, this thesis: 1) proposes distributed inter-cluster interference management procedures for coordinated multipoint (CoMP)-based cellular networks, either by exchanging control-plane messages between clusters or exploiting propagation channel reciprocity, and 2) investigates how to take advantage of two promising transmission technologies envisioned in current standards: CoMP-based transmissions and relay stations.[CASTELLÀ] Con el objetivo de mejorar la eficiencia espectral del sistema y proporcionar una cobertura homogénea para las redes celulares futuras, esta tesis: 1) propone técnicas y procedimientos distribuidos de gestión de la interferencia entre clusters (o grupos de transmisores) para las redes celulares basadas en coordinación multipunto (CoMP)​​, ya sea mediante el intercambio de mensajes en el plano de control entre clusters o bien mediante la explotación de la reciprocidad del canal de propagación radio, y 2) investiga cómo aprovechar conjuntamente las ventajas proporcionadas por dos prometedoras tecnologías de transmisión previstas en los estándares actuales: transmisiones basadas en CoMP ​​y transmisiones asistidas por repetidores.[CATALÀ] Amb l'objectiu de millorar l'eficiència espectral del sistema i proporcionar una cobertura homogènia per a les xarxes cel·lulars del futur, aquesta tesi: 1) proposa tècniques i procediments distribuïts de gestió de la interferència entre clústers (o grups de transmissors) per a les xarxes cel·lulars basades en coordinació multipunt (CoMP), ja sigui mitjançant l'intercanvi de missatges en el pla de control entre clústers o bé mitjançant l'explotació de la reciprocitat del canal de propagació ràdio, i 2) investiga com aprofitar conjuntament les avantatges proporcionades per dues prometedores tecnologies de transmissió previstes en els estàndards actuals: transmissions basades en CoMP i transmissions assistides per repetidors

    Coordination strategies for interference management in MIMO dense cellular networks

    Get PDF
    The envisioned rapid and exponential increase of wireless data traffic demand in the next years imposes rethinking current cellular networks due to the available spectrum scarcity. In this regard, 3 main drivers are considered to increase the capacity of today's most advanced (4G) and future (5G and beyond) cellular networks: use more bandwidth (more Hz) through spectral aggregation, enhance the spectral efficiency per base station (BS) (more bits/s/Hz/BS) by using multi-antenna (i.e. MIMO) systems, and increase the density of BSs (more BSs/km2) through a dense and heterogeneous deployment. We focus on the last 2 drivers. First, the use of MIMO systems allows exploiting the spatial dimension for improving the capacity of a conventional point-to-point link, increasing the number of served users, and reducing unwanted emissions (interference). Second, dense heterogeneous networks are a simple and cost-effective way to boost the area spectral efficiency by densifying the network and improving the spatial re-use of the spectrum. However, increasing the BSs density entails two main technical challenges: the interference increases because neighboring BSs/users are nearer and the amount of data traffic, as well as downlink (DL) and uplink (UL) traffic asymmetry, varies over space and time more drastically since the number of users per BS is reduced. The increase of interference makes the development of efficient interference management techniques a key enabler for MIMO dense heterogeneous networks. On the other hand, the variability of the per-BS traffic amount and the DL/UL traffic asymmetry convert flexible duplexing (i.e. flexible allocation of DL/UL resources per BS) into a necessity for an efficient resource usage. Therefore, the development of resource management schemes capable of adapting to the varying traffic load, as well as interference management, becomes crucial. Accordingly, this thesis focuses on the development of advanced interference management techniques to deal with inter-cell interference in MIMO dense networks and on the design of traffic- and interference-aware resource management schemes for flexible duplexing systems in asymmetric traffic conditions. To these goals, the wide deployment of MIMO systems is capitalized to develop advanced multi-antenna signal processing techniques when full reuse of time and frequency resources among densely deployed BSs is adopted. In the first part, different statistical characterizations of the transmitted signals are analyzed to improve the capacity of wireless interference-limited MIMO channels. Advanced signaling schemes are developed and the use of improper Gaussian signaling (IGS) is investigated, which allows exploiting the real and imaginary dimensions of MIMO channels. Majorization theory is exploited to demonstrate the strict superiority of IGS. In the second part, transmit coordination strategies are proposed to manage interference in extremely dense cellular networks. The design of BSs transmit strategies (involving design of spatial transmit/receive filters, power control, and user scheduling) is coordinated to optimize different network functions while reducing the stringent requirements needed for channel estimation in dense networks. Coordination strategies for the case in which different signaling schemes coexist in the network are also derived. Further, coordination strategies for cluster-based joint transmissions are developed, where BSs are grouped into clusters and different clusters interfere to each other. The third part focuses on the design of traffic- and interference-aware duplexing techniques to make a better use of the available resources by taking into account the asymmetric traffic conditions that arise in dense networks and managing the new kinds of interference that come up under flexible duplexing. Short-term and long-term optimizations are investigated, being therefore the interference managed instantaneously and statistically, respectively.L'augment ràpid i exponencial previst per a la demanda de tràfic de dades en els pròxims anys imposa redissenyar les xarxes cel·lulars actuals degut a l'escassetat de l'espectre radioelèctric disponible. Es consideren 3 eixos directors per augmentar la capacitat dels sistemes més avançats d'avui dia (4G) i del futur (5G i més enllà): utilitzar més ample de banda (més Hz), millorar l'eficiència espectral per estació base (BS) (més bits/s/Hz/BS) utilitzant sistemes multi-antena (MIMO) i incrementar la densitat de BSs (més BSs/km2) a través d'un desplegament dens i heterogeni. Ens centrem en els 2 últims eixos. En primer lloc, l'ús de sistemes MIMO permet explotar la dimensió espacial per millorar la capacitat d'un enllaç convencional punt a punt, incrementar el nombre d'usuaris servits i reduir emissions indesitjades (interferències). En segon lloc, les xarxes denses i heterogènies són una manera simple i rentable de millorar l'eficiència espectral per àrea a través de la densificació de la xarxa i la reutilització espacial de l'espectre. No obstant això, l'increment de la densitat de BSs planteja dos principals reptes tècnics: les interferències augmenten perquè BSs/usuaris veïns estan més propers i la quantitat de tràfic de dades, així com l'asimetria del tràfic de baixada (DL) i de pujada (UL), fluctua amb el temps i l'espai més dràsticament ja que el nombre d'usuaris per BS és reduït. Per tant, un factor clau per a les xarxes MIMO denses i heterogènies és el desenvolupament de tècniques eficients de gestió d'interferències. D'altra banda, la variabilitat de la quantitat i asimetria del tràfic converteix en una necessitat el duplexat flexible (és a dir, assignacions flexibles de recursos DL/UL per BS) per aconseguir un ús eficient dels recursos. Així doncs, es torna crucial el desenvolupament d'esquemes de gestió de recursos capaços d'adaptar-se a càrregues de tràfic variable i, a la vegada, gestionar interferències. Aquesta tesi es centra en el desenvolupament de tècniques avançades de gestió d'interferències per combatre interferències entre cel·les en xarxes MIMO denses i en el disseny d'esquemes de gestió de recursos que tenen en compte el tràfic i la interferència per a sistemes de duplexat flexible en condicions asimètriques de tràfic. Per aconseguir aquests objectius, s'aprofita l'ampli desplegament de sistemes MIMO per desenvolupar tècniques avançades de processament de senyals quan s'adopta reutilització completa de recursos entre BSs densament desplegades. En la primera part, s'analitzen diferents caracteritzacions estadístiques dels senyals transmesos per millorar la capacitat dels canals limitats per interferència. Es deriven esquemes de senyalització avançats i s'investiga l'ús de la senyalització Gaussiana improper, la qual permet explotar les dimensions reals i imaginàries dels canals MIMO. En la segona part, es proposen estratègies de transmissió coordinades per gestionar interferències en xarxes denses. El disseny de les estratègies de transmissió a les BSs (incloent: disseny de filtres espacials en transmissió/recepció, control de potència i selecció d'usuaris) és coordinat per optimitzar diferents funcions de xarxa mentre que es redueixen els estrictes requisits d'estimació de canal en xarxes denses. També s'analitzen estratègies de coordinació per al cas en què diferents esquemes de senyalització coexisteixen. A més, es deriven estratègies de coordinació per a transmissions conjuntes basades en grups, on les BSs s'agrupen en grups i grups veïns s'interfereixen entre si. La tercera part es centra en el disseny de tècniques de duplexat flexible que tenen en compte tràfic i interferència per fer un millor ús dels recursos disponibles, considerant condicions de tràfic asimètriques i gestionant els nous tipus d'interferències que apareixen sota el duplexat flexible. S'investiguen optimitzacions a curt i a llarg termini, sent llavors la interferència gestionada instantàniament i estadísticament, respectivament.El aumento rápido y exponencial previsto para la demanda de tráfico de datos en los próximos años impone rediseñar las redes celulares inalámbricas actuales debido a la escasez del espectro radioeléctrico disponible. En este sentido, se consideran tres ejes directores para aumentar la capacidad de las redes celulares más avanzadas de hoy en día (sistemas 4G) y las del futuro (sistemas 5G y más allá): - utilizar más ancho de banda (más Hz) a través de la agregación de espectro, - mejorar la eficiencia espectral por estación base (BS) (más bits/s/Hz/BS) utilizando múltiples antenas en las BSs y los usuarios (sistemas MIMO), e - incrementar la densidad de BSs (más BSs/km2) mediante un despliegue denso y heterogéneo (conocido como redes densas y heterogéneas). Esta tesis se centra en los dos últimos ejes directores. En primer lugar, el uso de sistemas multi-antena permite explotar la dimensión espacial con varias finalidades: mejorar la capacidad de un enlace inalámbrico convencional punto a punto, incrementar el número de usuarios servidos y reducir emisiones indeseadas (interferencias). En segundo lugar, las redes densas y heterogéneas son una manera simple y rentable de mejorar la eficiencia espectral por área a través de la densificación de la red con BSs de diferentes características y de la reutilización espacial del espectro radioeléctrico. Sin embargo, el incremento de la densidad de BSs plantea dos principales desafíos técnicos: - las interferencias en la red aumentan porque BSs/usuarios vecinos están más próximos y - la cantidad de tráfico de datos, así como la asimetría del tráfico de bajada (DL) y de subida (UL), fluctúa con el tiempo y el espacio más drásticamente debido a que el número de usuarios por BS se reduce. El aumento de interferencias en la red hace que un factor clave para las redes MIMO densas y heterogéneas sea el desarrollo de técnicas eficientes de gestión de interferencias. Pero, a medida que avanzamos hacia redes más densas, la gestión de interferencias se convierte cada vez en un reto más desafiante. Por otro lado, la variabilidad de la cantidad de tráfico de datos por BS y de la asimetría del tráfico DL/UL convierten en una necesidad el duplexado flexible (es decir, asignaciones flexibles y dinámicas de recursos DL/UL por BS, ya sea en el dominio temporal o frecuencial) para conseguir un uso eficiente de los recursos radio que satisfaga las cargas de tráfico no uniformes en espacio y variantes en tiempo. Por lo tanto, se vuelve crucial el desarrollo de esquemas de gestión de recursos capaces de adaptarse a cargas de tráfico variable y de, a su vez, gestionar las interferencias. En este sentido, esta tesis doctoral se centra en: 1. el desarrollo de técnicas avanzadas de gestión de interferencias para hacer frente a las interferencias entre celdas en redes celulares MIMO densas, y 2. el diseño de esquemas de gestión de recursos que tengan en cuenta el tráfico y la interferencia para sistemas de duplexado flexible bajo condiciones de tráfico asimétricas. Para alcanzar estos objetivos, se aprovecha el amplio despliegue de sistemas MIMO con el fin de desarrollar técnicas multi-antena avanzadas de procesado de señales cuando se adopta un reúso completo de los recursos en tiempo y en frecuencia entre BSs densamente desplegadas en la red. En la primera parte de la tesis, se analizan diferentes caracterizaciones estadísticas de las señales de transmisión para mejorar la capacidad de los canales inalámbricos interferentes. En este sentido, se desarrollan esquemas de señalización avanzados y se investiga el uso de la señalización Gaussiana improper (IGS), la cual permite aprovechar las dimensiones reales e imaginarias de los canales de propagación MIMO mediante la división de una dimensión espacial en dos mitades. La teoría de la majorización se explota para demostrar la superioridad estricta de IGS. Después, los beneficios de IGS se aplican a diferentes escenarios MIMO limitados por interferencia. Otra forma de gestionar la interferencia con reúso completo de los recursos frecuenciales es mediante la coordinación y/o cooperación de BSs. La coordinación entre BSs permite ajustar de manera coordinada las estrategias de transmisión de diferentes BSs con el objetivo de reducir el impacto de las interferencias en la red. Por el contrario, la cooperación entre BSs permite que las BSs actúen como un único transmisor multi-antena y tiene la gran ventaja de que convierte la interferencia en señal útil a través de la transmisión conjunta de BSs cooperativas hacia un mismo usuario. Sin embargo, la cooperación requiere sincronización estricta y alta capacidad de backhaul para compartir datos de usuario entre BSs. Por esta razón, en implementaciones prácticas, la cooperación sólo se puede lograr entre un número reducido de BSs (las cuales forman un grupo) y la coordinación entre grupos sigue siendo necesaria para hacer frente a las interferencias. Tanto la coordinación como la cooperación, ya sean implementadas de forma centralizada o descentralizada, requieren el conocimiento de todos los canales de propagación de la red, lo cual impone requisitos estrictos en cuanto a estimación de canal para la gestión de interferencias en redes densas. En la segunda parte de este trabajo se proponen estrategias de transmisión coordinadas para gestionar interferencias en las redes celulares extremadamente densas. El foco está en la transmisión DL. El diseño de las estrategias de transmisión en las BSs (incluyendo el diseño de los filtros espaciales de transmisión y recepción, el control de potencia y la selección de usuarios) es coordinado con tal de optimizar diferentes funciones de red (como, por ejemplo, la suma ponderada de las tasas de transmisión), mientras que se reducen los estrictos requisitos necesarios para estimación de canal en redes densas. También se analizan estrategias de coordinación para el caso en que diferentes esquemas de señalización (proper e improper) coexisten en la red. Además, la tesis deriva estrategias de coordinación para transmisiones conjuntas basadas en grupos, donde las BSs se agrupan en grupos formados por un número reducido de BSs cooperativas y grupos vecinos se interfieren entre sí. En este caso, la estrategia de transmisión se optimiza conjuntamente con la formación de los grupos. Por último, se aborda la gestión de recursos en sistemas de duplexado flexible, donde los recursos tienen que ser distribuidos adecuadamente entre las transmisiones DL y UL de acuerdo con las asimetrías y la cantidad de tráfico de cada BS. Bajo una reutilización de recursos en BSs densamente desplegadas, el uso del duplexado flexible conlleva cambios en la interferencia generada entre BSs y/o usuarios vecinos. Como consecuencia, surgen nuevos tipos de interferencias (como la interferencia de BS a BS). La tercera parte de la tesis se centra en el diseño de técnicas de duplexado flexible que tienen en cuenta el tráfico para la gestión de recursos y de interferencias. En contraste con las partes anteriores, se consideran transmisiones DL y UL para cada BS. El objetivo principal es hacer un mejor uso de los recursos tiempo/frecuencia disponible, teniendo en cuenta las condiciones de tráfico asimétricas que surgen en redes densas, así como la gestión de los nuevos tipos de interferencias que aparecen bajo sistemas de duplexado flexible. Se investigan optimizaciones a corto plazo y a largo plazo, siendo entonces la interferencia gestionada de manera instantánea y de manera estadística, respectivamente

    Modes d'accés basats en coordinació multipunt per transmissions amb repetidors en sistemes 4G

    No full text
    Premi Càtedra Red.es en l’Àrea de Sistemes de la Informació al millor Projecte de Fi de Carrera d'Enginyeria de Telecomunicació. Atorgat per Càtedra Red.es. (Curs 2011-2012)English: the objective of this project is to explore and evaluate new system architectures for next generation cellular systems, by developing new system deployments and then deriving algorithms for the resource allocation with QoS requirements for the downlink. With this end, we study the combination of coordinated multipoint (CoMP) and heterogeneous networks, with relay stations (RSs) and femto access points (FAPs), so as to improve the system cellular spectral efficiency and the service homogeneity.Castellano: en este proyecto se exploran nuevas arquitecturas de sistema para los sistemas celulares de próximas generaciones, desarrollando nuevos desplegamientos de red y derivando algorismos para la asignación de recursos bajo requerimientos de calidad de servicio (QoS) en la transmisión del enlace descendente. Con este fin, se estudia la combinación de estratégias basadas en coordinación multipunto (CoMP) y redes heterogéneas, con repetidores y femto-celdas, para mejorar la eficiencia espectral celular del sistema y garantizar un servicio homogéneo.Català: en aquest projecte s'exploren noves arquitectures de sistema per als sistemes cel·lulars de pròximes generacions, desenvolupant nous desplegaments de xarxa i derivant algorismes per a l'assignació de recursos sota requeriments de qualitat de servei (QoS) per la transmissió en l'enllaç descendent.. Amb aquest fi, s'estudia la combinació d'estratègies basades en coordinació multipunt (CoMP) i xarxes heterogènies amb repetidors i femto-cel·les (FAPs), per tal de millorar la eficiència espectral cel·lular del sistema i garantir la homogeneïtat dels serveis.Award-winnin
    corecore